Diarrea emorragica acuta, infezione da *Escherichia* coli produttori di Shiga tossine e sindrome emolitica uremica

DOCUMENTO D'INDIRIZZO INTER-SOCIETARIO*

La sindrome emolitica uremica (SEU) secondaria a Escherichia coli produttori di Shiga tossina (STEC) rimane un importante problema clinico individuale e di Sanità pubblica, essendo tra le principali cause di insufficienza renale acuta in bambini precedentemente sani. Lo scopo del presente contributo è di condividere l'approccio clinico alla diarrea emorragica acuta (DEA) e alle infezioni da STEC con un coinvolgimento di tutte le Società scientifiche rilevanti per il contesto con l'obiettivo di promuovere la diagnosi precoce dell'infezione da STEC attraverso lo screening di tutte le DEA con la Biologia molecolare.

e nuove tecnologie d'indagine microbiologica, basate sulla Biologia molecolare, offrono nuove opportunità di cura e pongono nuove sfide. Questo documento ripercorre in modo sintetico gli elementi più significativi e recenti relativi a una problematica endemica nel nostro Paese quale l'infezione da Escherichia coli produttore di Shiga tossine (STEC). Tale condizione si manifesta spesso con una fase prodromica di diarrea emorragica acuta (DEA) e può evolvere in una malattia grave: la sindrome emolitica uremica (SEU). Lo scopo di questo documento è di mettere in evidenza le opportunità di cui attualmente disponiamo sia per prevenire l'insorgenza della SEU sia, nel caso in cui si manifesti, per ridurne la gravità del decorso. All'interno della relazione si riassumeranno tutte le azioni che possono essere implementate nella pratica clinica per raggiungere tali obiettivi.

Il documento è frutto della collaborazione delle Società scientifiche, Istituzioni o Enti citati che, a vario titolo, sono o possono essere coinvolte nella problematica.

Per una sua più agevole consultazione abbiamo impostato il lavoro attraverso affermazioni fondamentali EXPERT INTER-SOCIETY CONSENSUS ON THE MANAGEMENT OF ACUTE BLOODY DIARRHEA FOCUSSED ON STEC INFECTION AND HUS

(Medico e Bambino 2025;44(8):510-518. doi: 10.53126/ MEB44510)

Key words

Shiga toxin-producing Escherichia coli, Hemolyic uremic syndrome

Summary

Hemolytic uremic syndrome (HUS) associated with Shiga toxin-producing Escherichia coli (STEC) infection is a major individual and public health challenge and it is the leading cause of acute kidney injury in children. In Western countries, HUS complicates about 15% of STEC infections, which usually present with acute bloody diarrhea (ABD). At least 6-7% of cases of ABD in children (rising to 15-20% during summer) are caused by STEC. The widespread use of molecular microbiology techniques enables the diagnosis of STEC infection before HUS onset in an increasing number of patients generating a window of preventive and/ or therapeutic opportunities. Given the rapid progression of the disease, all children with ABD should be tested as early as possible for Shiga toxin (Stx) encoding genes. Stx-positive patients should then be closely monitored for HUS development by urine dipstick for the development of hemoglobinuria. This proactive diagnostic approach allows the application of measures aimed at preventing or mitigating the severity of HUS among which stands the early and generous fluid administration. Moreover, although antibiotics are not recommended in STEC infections, recent data suggest a promising potential preventive role for bacteriostatic agents (e.g. azithromycin) if given early during the infection. The aim of the present contribution is to share the approach to ABD and STEC infection as endorsed by the scientific societies actively engaged in this area (AMCII, SIGENP, SIMEUP, SIN, SIP, SIPPS, SITIP). The goal is to promote the early diagnosis of STEC infection by molecular microbiology of ABDs nationwide, thereby improving our understanding of the mechanisms of disease spreading, and hopefully reducing the incidence of HUS and its case fatality rate as well as improving both short- and long-term outcomes.

con relativi approfondimenti, spiegazioni ed evidenze a loro supporto. Alla fine di ciascuna affermazione, in parentesi, sono indicati il numero di votanti l'affermazione e il punteggio raggiunto considerando la seguente equivalenza: sono d'accordo 100, sono parzialmente d'accordo 75, sono parzialmente in disaccordo 25, sono in disaccordo 0.

PARTE I - DIAGNOSTICA

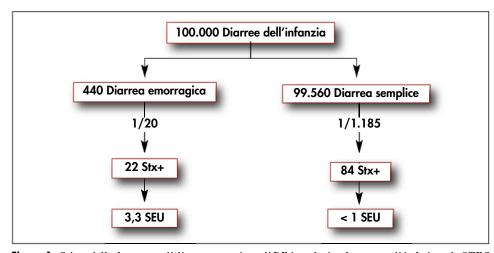
1. Nei Paesi occidentali la DEA è abitualmente causata da agenti batterici tra cui lo STEC (28; 98%)

La diarrea acuta è una patologia estremamente comune specialmente in età pediatrica (in età prescolare si stimano circa 500-2.000 eventi/1.000 bambini/anno)¹. La DEA, definita come "diarrea con presenza di sangue visibile, anche solo in minima quantità, riferita anche solamente dal paziente o dai familiari", invece, ha un'incidenza stimata di circa 3.3 casi/1.000 bambini/ anno². Quest'ultima può essere causata da diversi patogeni. I batteri più comunemente responsabili nel Nord Italia (in ordine di frequenza) sono: Campylobacter spp., Salmonella spp. ed Escherichia coli (tra i quali lo STEC); meno comunemente Clostridioides difficile, Yersinia spp., Aeromonas spp. e Shigella spp. In Italia lo STEC si colloca al 4° posto tra le eziologie della DEA più comunemente riscontrate (Tabella I), con una frequenza relativa di 4-8% dei casi di DEA a seconda delle aree geografiche considerate³.

2. La DEA deve considerarsi un'urgenza medica in relazione al rischio di SEU (26; 98%)

Una stima fondata sugli elementi epidemiologici disponibili (ItalKid-HUS Network - dati non pubblicati) suggerisce che di 100.000 casi di diarrea meno di 500 siano associati a componente ematica, mentre i restanti consistono in diarrea acuta non emorragica (secretiva). Tra i primi sono mediamente attesi circa 20-25 casi di infezioni da STEC dai quali potranno derivare 3-4 casi di SEU. Quindi, in presenza di DEA, sarà identificato almeno 1 caso di infezione da STEC sottoponendo 18-20 pazienti a test specifico. Invece, per la diarrea acuta non emorragica, serviranno più di 1.000 determinazioni per identificare un singolo caso di positività per STEC (Figura 1).

La scelta di focalizzare gli sforzi sulla DEA deriva anche dalla considerazione che il tasso di conversione in SEU delle infezioni da STEC senza componente emorragica è molto basso (< 1%) e le forme di SEU che ne de-


EZIOLOGIA DELLA DIARREA EMORRAGICA ACUTA NEI BAMBINI NELL'ERA DELLA DIAGNOSTICA MOLECOLARE E DISTRIBUZIONE PERCENTUALE DELLE SHIGA TOSSINE Campylobacter 28,7 Salmonella 15,4 Coli enteropatogeni non STEC 9,6 Stx1 17,8% Stx2 50,2% **STEC** 5,1 Stx1+2 31.5 Clostridioides difficile 4,5 Aeromonas 1.4 Yersinia 1,0

34,3

Nota: i numeri sono espressi come percentuale relativa.

Tabella I

Negativo

Figura 1. Stima della frequenza di diarrea secretiva e di DEA e relativa frequenza di infezione da STEC e della successiva evoluzione in SEU in una popolazione pediatrica (dati ItalKid-HUS Network).

rivano sono generalmente meno gravi e quindi a evoluzione benigna.

3. L'infezione gastroenterica da STEC può evolvere in SEU in funzione del profilo di virulenza del batterio (28; 98%)

L'infezione causata dallo STEC può evolvere in una grave microangiopatia trombotica, la SEU, in una percentuale variabile tra 10-20% dei casi².

Il rischio di conversione in SEU di un'infezione da STEC dipende, tra l'altro, dal profilo di virulenza dello stesso STEC: si registra un rischio minimo (< 1%) nel caso di positività della sola Shiga tossina 1 (Stx1); intorno al 12% in presenza di entrambe le Stx1 e 2; del 23% nel caso sia presente solo Stx2⁴.

Altri fattori predisponenti la SEU o la sua maggior gravità sono: l'età < 5 anni, la coesistenza di disidratazione, la febbre, GB > 20.000/mm³, maggior componente ematica nella diarrea, l'as-

sunzione di anti-diarroici e antibiotici (per quest'ultimo, vedi punti 14 e 15).

4. L'incidenza della SEU da STEC, in età pediatrica, è nell'ordine di 6-7 casi per anno per milione di popolazione di pari età, ma la malattia può manifestarsi anche nell'adulto (27; 100%)

In Italia, all'interno del Registro Nazionale della SEU, sono segnalati annualmente un numero di casi pediatrici variabili tra le 50-70 unità, con una incidenza media di 7 casi per milione per anno^{5,6}. La malattia colpisce più tipicamente (2/3 dei casi) i bambini di età < 6 anni, pur essendo presente in misura minore anche in età successive. Quando un adolescente presenta DEA, la probabilità che si tratti di STEC (e il rischio di SEU associato) non è trascurabile, benché presenti DEA con frequenza molto minore rispetto ai bambini più piccoli (*Tabella II*). Nell'adulto la

malattia risulta probabilmente sottodiagnosticata e non sono note stime affidabili della sua incidenza.

5. L'infezione da STEC e quindi la SEU correlata, colpisce anche l'adulto (26; 100%)

Le infezioni da STEC, seppure con frequenza minore, colpiscono anche l'adulto; nella maggior parte dei casi guariscono in pochi giorni senza lasciare sequele, ma possono essere causa di SEU con un'incidenza non nota. L'adulto con infezione da STEC manifesta raramente la diarrea emorragica, spesso la sintomatologia si limita a lieve dispepsia. L'età avanzata è ritenuta un fattore di rischio per una prognosi peggiore (forse anche per la coesistenza di comorbidità) così come la presenza di malattia renale cronica preesistente e lo stato di disidratazione^{7,8}. L'identificazione precoce dei pazienti a rischio di SEU è necessaria soprattutto negli scenari epidemici in cui il numero dei pazienti in condizioni cliniche potenzialmente fragili può diventare improvvisamente elevato. Nelle famiglie di bambini affetti da SEU è comune il riscontro contemporaneo di soggetti adulti colonizzati da STEC⁹, tanto da porre il dubbio che il bambino possa essersi infettato dall'adulto (o viceversa).

6. Alle nostre latitudini, le infezioni da STEC e quindi le SEU hanno un picco di incidenza nei mesi di luglio, agosto, settembre (28; 100%)

La malattia ha una ben nota stagionalità con un aumento dei casi in primavera, estate e autunno (Figura 2) Inoltre all'interno di questa stagionalità, i mesi di luglio, agosto e settembre sono i più colpiti e la probabilità che una diarrea emorragica sia causata da STEC risulta più che triplicata.

La malattia, oltre a manifestarsi in forma endemica, può presentarsi anche con focolai epidemici per infezioni a partenza da una singola sorgente contaminante (normalmente un alimento).

7. La fonte d'infezione da STEC rimane ignota nel 70% dei casi (28; 100%)

L'infezione da STEC e la sua complicanza (SEU) sono zoonosi, essendo

FREQUENZA RELATIVA DI DEA, INFEZIONI DA STEC E SEU PER CLASSI DI ETÀ						
Classe d'età (aa)	DEA n (%)	Infezione da STEC n (%)	SEU n (%)			
0-5	3.217 (61,6)	203 (61,5)	91 (69,,2)			
5-10	1.126 (21,5)	73 (22,1)	21 (23,3)			
10-15	604 (11,6)	41 (12,4)	8 (6,0)			
15-20	279 (5,3)	13 (4,0)	2 (1,5)			
Totale	5.226 (100)	330 (100)	133 (100)			

Tabella II. Dati ItalKid-HUS Network 2023-2024 (aa 2010-2024).

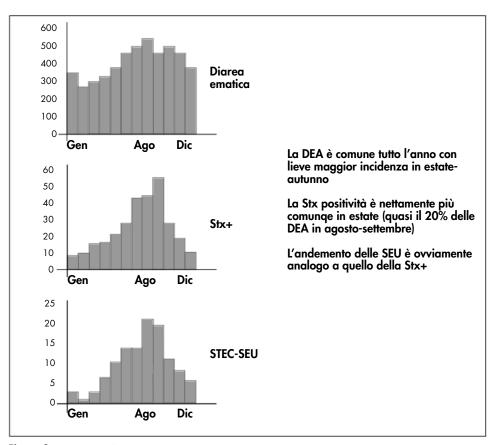


Figura 2. Stagionalità della DEA, dell'infezione da STEC e della SEU (aa 2010-2024).

i ruminanti il serbatoio naturale del batterio. La fonte principale di infezione è rappresentata dagli alimenti di origine animale che non abbiano subito un trattamento termico (cottura o pastorizzazione). Tradizionalmente, quindi, vengono considerati veicolo dell'infezione le carni poco cotte e i latticini non pastorizzati. Sarebbe dunque utile che questi alimenti non fossero somministrati ai bambini vista la loro particolare suscettibilità all'infezione. Inoltre, sono state ben documentate altre vie di trasmissione dell'infezione: il contatto diretto con ruminanti, l'ingestione e/o il bagno in acque dolci non pulite, l'assunzione di alimenti di origine vegetale probabilmente contaminati da deiezioni animali (letame) e anche la trasmissione inter-umana (più comune nei contesti domestici o nelle scuole dell'infanzia)^{9,10}.

Negli ultimi anni è stato precisato che non pochi casi di infezione da STEC hanno colpito soggetti di rientro da noti luoghi di vacanza in Egitto¹¹.

Nonostante quanto sopra esposto, la gran parte dei casi di infezione da STEC (70%) rimane da fonte sconosciuta e per questa ragione risulta essenziale la segnalazione di ogni singolo caso ai sistemi di sorveglianza. Infatti, solo la conoscenza di tutti i casi diagnosticati consentirà di ricostruire i meccanismi attraverso i quali i pazienti contraggono l'infezione, prerequisito essenzia-

le per identificare e mettere in atto un'efficace prevenzione della malattia.

8. Tutte le DEA dovrebbero essere sottoposte a test specifico per la ricerca di geni codificanti le Stx (28; 95%).

Oggi è possibile identificare l'infezione da STEC mediante indagini di biologia molecolare da applicare con sollecitudine in ogni caso di diarrea con componente emorragica. In particolare, sono disponibili test molecolari multiparametrici e test molecolari "sindromici". I test multiparametrici forniscono risultati in tempi rapidi, ma i tempi di refertazione sono strettamente legati all'organizzazione del singolo laboratorio che esegue l'esame. I test sindromici, eseguibili rapidamente. consentono di ottenere il risultato entro poche ore dall'arrivo del campione in laboratorio. Si sottolinea che nella diarrea non emorragica a carattere secretivo non c'è indicazione all'esecuzione del test per la ricerca dei geni codificanti le Stx salvo ricorrano elementi di rischio specifici: 1) nel contesto di epidemie da STEC; 2) soggetto di rientro da aree ad alto rischio (Sud America, Egitto e Magreb); 3) familiare di soggetto con infezione da STEC.

Ai fini della diagnosi per finalità cliniche, la microbiologia tradizionale non è di alcuna utilità perché non è in grado di identificare tutti gli STEC. Anche i test immunocromatografici o immunoenzimatici si sono rivelati poco sensibili e come tali possibilmente fuorvianti. Con le metodiche di Biologia molecolare, altamente sensibili, non è invece infrequente il riscontro di multiple positività. Alcuni dei sistemi diagnostici di Biologia molecolare identificano anche altri Escherichia coli responsabili di patologia gastro-intestinale (EAEC, EPEC, ETEC, EIEC) che tuttavia, se non Stx-produttori, non richiedono misure speciali. In presenza di positività per i geni codificanti le Stx, il paziente dovrà essere considerato a rischio di sviluppare la SEU. È già stato precisato che il rischio di SEU è diverso a seconda delle Stx coinvolte⁴. Peraltro, molti dei test molecolari disponibili non distinguono le due tossine e quindi la gestione del paziente dovrà essere im-

prontata alla massima cautela, come se fosse presente la Stx2. Solo l'approfondimento relativo alla tossina implicata (1, 2 o entrambe) consentirà poi di definire il rischio di SEU con precisione. Per garantire la rapidità dell'indagine, potrebbe essere utile segnalare il caso al laboratorio. L'indagine molecolare (test multiparametrico e/o sindromico) è effettuabile presso numerosi laboratori di Microbiologia, come indicato nella cartina in Figura 3 e nella tabella Tabella III. La lista potrebbe non essere esaustiva e quindi non comprendere tutti i centri che effettivamente possono fornire la diagnostica per geni codificanti le Stx, anche in ragione della recente e rapida diffusione dei test stessi (saremmo grati se ci segnalaste eventuali laboratori omessi per poter rettificare la lista: ardissino@centroseu.org).

9. È importante che il caso di infezione da STEC sia notificato ai sistemi di sorveglianza delle malattie infettive (PREMAL) e che il campione positivo (o il ceppo di STEC isolato) siano inviati al laboratorio di riferimento regionale e/o nazionale per la loro completa caratterizzazione (28; 100%)

La notifica dei casi positivi per STEC ai Servizi di Igiene e Sanità Pubblica dei Dipartimenti di Prevenzione (SISP), obbligatoria dal 2022, consente di identificare tempestivamente eventuali epidemie in corso. È infatti possibile che i casi afferiscano a diverse strutture ospedaliere e, se non viene effettuata la segnalazione, sarà impossibile rendersi conto di multipli casi riconducibili a un medesimo agente infettante e/o a una medesima sorgente. A seguito della segnalazione del clinico che ha posto il sospetto diagnostico, i SISP insieme ai SIAN (Servizi di Igiene degli Alimenti e della Nutrizione) effettuano un'indagine tesa a identificarne la causa. Ricordiamo che a oggi circa il 70% dei casi di SEU rimane da causa ignota. La mancata o tardiva segnalazione dei casi ostacola la possibilità di identificare la sorgente dello STEC perché l'alimento contaminato potrebbe non essere più disponibile al momento dell'indagine.

Figura 3. Centri che in Italia offrono la diagnostica molecolare per geni codificanti le Stx.

Presso l'Istituto Superiore di Sanità di Roma ha sede il Laboratorio di Riferimento Europeo e Nazionale per le analisi sugli *Escherichia coli*, dove oltre a caratterizzarne il sierotipo e il profilo di virulenza, viene eseguito il sequenziamento genomico anche a beneficio dell'identificazione di fonti comuni d'infezione. Parallelamente importante è stabilire un contatto con il Centro di Nefrologia pediatrica di riferimento in caso di positività per Stx per la condivisione del caso e il trasferimento immediato del paziente in caso di SEU conclamata.

PARTE II - GESTIONE CLINICA

10. Il decorso della malattia, dall'infezione iniziale alla SEU (nel caso si sviluppi), segue un percorso relativamente standard e rapido: incubazione, diarrea acuta non emorragica, diarrea acuta emorragica, SEU (24; 99%)

La malattia ha un'incubazione breve e i primi sintomi compaiono 3-5 giorni dopo l'ingestione del batterio. L'infezione non è sempre sintomatica, ma quando lo diventa tipicamente si manifesta con dolore addominale e diarrea; vomito e febbre sono meno frequenti. Nelle prime 24-48 ore la diarrea appare a carattere secretivo (non emorragica) e quindi indistinguibile dai numerosi eventi di gastroenterite acuta che affliggono l'infanzia. Dopo 24-48 ore dall'inizio dei sintomi, si assiste alla comparsa del sangue nelle

		(ITALIA E REPUBBLI	CA DI SAN	MARINO)	SENI CODIFICANTI LE STX
ABRUZZO	PESCARA	Ospedale "Spirito Santo"	MOLISE	CAMPOBASSO	Ospedale "Cardarelli"
BASILICATA	POTENZA	AO Regionale "San Carlo"	PIEMONTE		AOU Maggiore della Carità di Novara
	MATERA	PO "Madonna delle Grazie"		BIELLA	Ospedale di Biella
	COSENZA	AO di Cosenza - PO "Annunziata"		TORINO	AOU Città della Salute e della Scienza
	CATANZARO	Campus di Germaneto AOU "R. Dulbecco"			Ospedale "Amedeo di Savoia"
	R. CALABRIA	Grande Ospedale Metropolitano		ALESSANDRIA	Presidio Civile "Santi Antonio e Biagio"
		Ospedale "Moscati"	PUGLIA	FOGGIA	AOU Policlinico Riuniti
	CASERTA	Ospedale "Sant'Anna e San Sebastiano"		S.GIOV.ROTONDO	Ospedale Casa Sollievo della Sofferenza
	NAPOLI	AOU "Federico II"		BARI	Policlinico di Bari
		AOU "Vanvitelli"		TARANTO	Ospedale "Santissima Annunziata"
		PO "Cotugno", AORN dei Colli		LECCE	Ospedale "Veris Delli Ponti Scorrano"
MILIA	PIACENZA	AUSL di Piacenza		TRICASE (LE)	Ospedale "Cardinale Panico"
ROMAGNA		AOU di Parma	SARDEGNA		AOU Sassari
	MODENA	AOU di Modena-Policlinico di Modena	O MOLOTA	NUORO	Ospedale "San Francesco"
	REGGIO EMILIA	IRCCS Arcispedale "Santa Maria Nuova"		CAGLIARI	AOU di Cagliari
	BOLOGNA	IRCCS AOU Policlinico "Sant'Orsola"	SICILIA	PALERMO	AOU Policlinico "P. Giaccone"
	FERRARA	AOU "S. Anna"	JICILIA	TALLINIO	Civico-Di "Cristina-Benfratelli"
	CESENA	AUSL Romagna, Centro Servizi Pievesestina			AO Ospedali Riuniti Villa Sofia – Cervello
RIULI	UDINF	AS Universitaria Friuli Centrale		ENNA	PO "Umberto I"
/ENEZIA	PORDENONE	PO "Santa Maria degli Angeli"		CALTANISETTA	PO "S. Elia"
GIULIA	TRIESTE	AS Universitaria Giuliano Isontina ASUGI		MESSINA	AOU Policlinico "G. Martino"
	INILOIL	IRCCS "Burlo Garofolo"		CATANIA	AOU Policlinico "G. Rodolico-San Marco"
	MONFALCONE	AS Universitaria Giuliano Isontina ASUGI		CAIAINIA	AO "Cannizzaro", Ospe. per l'Emergenza
LAZIO	ROMA	Policlinico Casilino			AO "Garibaldi"
AZIO	KOMA	Fond. Policl. Univ. "A. Gemelli" IRCCS		SIRACUSA	PO "Umberto I"
			TOSCANA	FIRENZE	Ospedale "Careggi"
		Ospedale "San Filippo Neri" Ist. Naz. Malattie Infettive "L. Spallanzani"	IOSCANA	LIVORNO	
		Ospedale "San Pietro Fatebenefratelli"		LUCCA	Ospedale Riuniti Ospedale "S. Luca"
		AO "San Camillo Forlanini"		PISTOIA	
				AREZZO	Ospedale "S. Jacopo"
	LATINA	Ospedale Pediatrico "Bambino Gesù"	TDENITING		Ospedale "S. Donato"
	FROSINONE	Ospedale "S. M. Goretti"	TRENTINO	TRENTO	Ospedale "Santa Chiara"
	GENOVA	Ospedale "F. Spazziani"	ALTO ADIGE		Ospedale Provinciale di Bolzano
LIGURIA		Ospedale Infantile "G. Gaslini"	UMBRIA	PERUGIA	AO "S. Maria della Misericordia"
O LAD A DDIA	PIETRA LIG. (SV)	Ospedale "Santa Corona"		TERNI	AO "Santa Maria" di Terni
	MILANO	IRCCS Ca' Granda Osp. Mag. Policlinico	VALLE	AOSTA	AO "Beauregard"
		Ospedale "Niguarda"	D'AOSTA	\((50.0) \((1) \)	
	ODELLA	AO "Sacco-FBF-Buzzi"	VENETO	VERONA	Osp. "Sacro Cuore-don Calabria di Negro
	CREMA	Ospedale di Crema			AOU Integrata
	CREMONA	Ospedale di Cremona		VICENZA	Ospedale "San Bortolo "di Vicenza
	PAVIA	Fondazione IRCCS Ospedale "San Matteo"		PADOVA	AOU Padova
	VARESE	Ospedale "F. del Ponte"		MESTRE	PO di Mestre
	BERGAMO	Ospedale "Papa Giovanni XXIII"		TREVISO	Ospedale di Treviso
MARCHE	ANCONA	AOU delle Marche	I REPUBBLICA	DI SAN MARINO	Ospedale di Stato

Tabella III

feci in circa l'80-90% dei casi¹². La presenza di sangue, spesso associata a muco, può presentare grande variabilità: da modeste striature ematiche sino al riscontro di abbondanti quantità. L'entità della componente ematica possiede un valore prognostico rispetto allo sviluppo della SEU, che sopraggiungerà nel 10-20% dei casi dopo un periodo minimo di 2 giorni e mediano di 5, fino a un massimo che dipende dal persistere della sintomatologia gastro-intestinale. In altri termini, quando la diarrea appare stabilmente cessata, è improbabile che possa manifestarsi la SEU. Vi sono però anche casi in cui la diarrea persiste a lungo, con fasi alterne di apparente remissione e ripresa. In tali circostanze il rischio di SEU permane fintanto che l'enterite non è risolta completamente. In presenza di DEA, già in Pronto Soccorso, è importante eseguire lo *stick* urine per Hb che da solo può escludere o avvalorare il sospetto di SEU in atto (vedi anche *statement* 11).

11. La gestione clinica di un paziente affetto da infezione STEC è diversa in funzione della tipologia di Stx prodotta (21; 95%)

Il rischio di sviluppare SEU in caso di infezione da STEC che produca solo Stx1 è trascurabile, mentre la coesistenza di Stx2 con Stx1 aumenta il rischio di conversione in SEU a circa il 12% e al 23% se la Stx2 è presente isolatamente^{2,4}. Per definire il profilo di rischio è quindi indispensabile l'approfondimento diagnostico relativo, ricordando però che i primi provvedimenti devono essere messi in atto come se fosse presente la Stx2 fino a miglior definizione diagnostica.

12. La gestione di un paziente affetto da infezione da STEC associato a Stx2 prevede:

- a. l'esecuzione immediata di accertamenti tesi a confermare o escludere la presenza di SEU già in corso;
- b. la somministrazione di fluidi per correggere l'eventuale

disidratazione o per mantenere il circolo ben espanso (21; 99%)

In presenza di infezione da STEC accertata senza definizione della Stx coinvolta o con accertata presenza di geni codificanti per la Stx2, se coesiste microematuria, sarà utile avviare accertamenti ematochimici e urinari tesi a escludere la presenza di segni riconducibili alla SEU in atto (esame emocromocitometrico, ricerca di schistociti, LDH, aptoglobina, funzione renale ed esame completo delle urine o stick urine per emoglobinuria). Se la SEU (consumo piastrinico, emolisi e danno renale) non è presente sarà sufficiente monitorare il paziente per l'eventuale comparsa della complicanza, attraverso uno stick urine per emoglobinuria (uHb) preferibilmente ogni 12 ore se il paziente è ricoverato (e quindi le sue condizioni cliniche saranno più presumibilmente a maggior rischio di evoluzione rapida in SEU), o ogni 24 ora se a domicilio¹³. Quando il paziente fosse ben idratato e le condizioni cliniche lo consentiranno, il mantenimento dello stato di idratazione e il monitoraggio dello stick urine potranno anche essere proseguiti a domicilio a opera del pediatra di famiglia o di altro personale sanitario o dagli stessi genitori se correttamente istruiti e dotati di alcuni stick. Nel caso lo *stick* urine si positivizzi (uHb ≥ 2+), la ripetizione degli esami ematochimici consentirà di confermare (o escludere) la presenza della triade diagnostica della SEU (consumo piastrinico, emolisi e danno renale), circostanziando la diagnosi (*Figura 4*).

13. La SEU si caratterizza per la seguente triade diagnostica: consumo piastrinico, emolisi meccanica (Coombs negativa), danno renale e multiorgano (24; 99%)

La SEU si manifesta con la triade classica: 1) consumo piastrinico (piastrine < 150.000/mm³ o dimezzamento rapido del patrimonio piastrinico); 2) emolisi (anemia emolitica microangiopatica, incremento di LDH, consumo di aptoglobina); 3) danno renale (incremento della creatininemia, microematuria con proteinuria) oltre a danno ischemico multiorgano (fegato, cuore, pancreas, sistema nervoso centrale e, seppure più raramente, anche altri organi).

Una volta instauratasi, la SEU ha un decorso caratterizzato da gravità molto variabile. La comparsa di anuria, l'iponatremia, la presenza di una conta leucocitaria > 20.000/mm³ e una emoglobina elevata all'esordio, sono tutti fattori di rischio per una malattia a decorso più grave¹⁴⁻¹⁶. Circa il 50% dei pazienti

ha necessità di supporto dialitico per un tempo mediano di alcuni (5-6) giorni. Circa il 20% presenta sintomi neurologici (per lo più convulsioni, ma raramente anche coma). L'interessamento del sistema nervoso centrale rappresenta anche la principale causa di morte nella SEU, evenienza che si verifica più spesso nelle fasi precoci della malattia in circa 1-5% dei casi.

Dopo un tempo variabile (5-10 giorni), la microangiopatia trombotica volge spontaneamente alla risoluzione, prima con la normalizzazione delle piastrine, poi con la ripresa funzionale renale e in ultimo con la stabilizzazione e poi il recupero dei valori di emoglobina. Un completo recupero della funzione renale (laddove si realizzi) richiede anche molto tempo a completarsi (talora anni). Circa il 50% dei casi guarisce completamente, anche se la perdita di una quota di glomeruli potrà, a distanza di decenni, avere delle conseguenze sulla salute del soggetto. I restanti pazienti possono presentare gradi variabili di danno renale (per lo più proteinuria e ipertensione, ma anche insufficienza renale cronica di grado variabile). Raramente (< 5% dei casi) permane una insufficienza renale cronica terminale dipendente dalla dialisi o danni neurologici permanenti12.

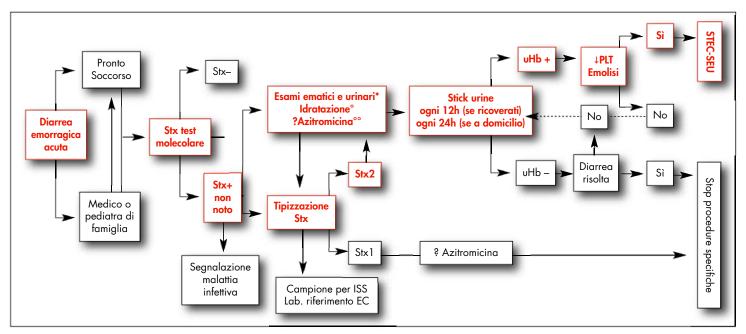


Figura 4. Algoritmo gestionale della DEA rispetto al rischio di infezione da STEC e SEU. *Emocromo, sCr, urea, LDH, AST/ALT, PCR, albumina, EGA. °Soluzioni isotoniche con target +5% del peso corporeo ideale. °°Azitromicina per os 10 mg/kg/die (max 500 mg/die) fino a risoluzione della diarrea (max 5 giorni).

14. All'esordio la SEU può non associarsi ad anemia nonostante la presenza di emolisi per la frequente coesistenza di uno stato di emoconcentrazione (19; 100%)

Circa il 25% dei casi di SEU da STEC all'esordio non presenta anemia (nonostante l'emolisi sia ben espressa dall'importante incremento di LDH e consumo di aptoglobina) a causa della coesistenza di uno stato di emoconcentrazione che, a sua volta, deriva dalla scarsa alimentazione, dal vomito e diarrea oltre alla fuga di liquidi (ed albumina) attraverso l'endotelio danneggiato16. Questa condizione di emoconcentrazione va rapidamente corretta perché la sua presenza è responsabile di un decorso peggiorativo della malattia, sia nella fase acuta sia come danni a lungo termine¹⁷.

15. Per escludere una SEU in atto è sufficiente la negatività dello stick urine per Hb, mentre la sua eventuale positività (uHb ≥ 2+) richiede la verifica degli esami ematochimici per poter porre diagnosi di SEU o escluderla (18; 95%)

In presenza di infezione da STEC sarà utile avviare un'infusione endovenosa (mantenimento + recupero di eventuali perdite) utilizzando soluzioni isotoniche o bilanciate (Ringer lattato) comunque con concentrazione di NaCl >130 mEq/l. Il Ringer è preferibile laddove l'infusione si prolunghi per più di 2 giorni. L'uso di soluzioni isotoniche è giustificato in quanto, se sopraggiungesse la SEU e quindi l'oligo-anuria in corso di infusione, si evita di causare iponatremia. L'uso di soluzioni bilanciate (Ringer lattato) per infusioni prolungate ha invece lo scopo di evitare di indurre acidosi ipercloremica. L'avvio di tale infusione risulta essere indispensabile per mettere il bambino nelle condizioni migliori di idratazione poiché è noto che, se la SEU sopraggiunge in un paziente disidratato, il decorso della malattia sarà più grave^{17,18}.

Laddove il paziente sia identificato già con SEU in atto, può ancora beneficiare di una generosa infusione (10 ml/kg/ora con un massimo di 300 ml/ora) di fluidi isotonici fino al pie-

no recupero del peso abituale. Infatti, tale terapia ha dato prova di ridurre la gravità della malattia¹⁷.

La trasfusione dei globuli rossi concentrati (per valori di Hb <6 gr/dl) è generalmente necessaria in tutti i bambini con SEU. La trasfusione di piastrine è invece riservata ai pazienti con manifestazioni emorragiche gravi (peraltro del tutto rare) o se necessitano di procedure chirurgiche.

Seguendo il decorso clinico della malattia, il paziente potrà necessitare di dialisi fino al completo recupero della funzionalità renale¹⁸.

Si precisa che recenti studi hanno documentato che gli inibitori del complemento non trovano indicazione in questa patologia nonostante le analogie con la SEU atipica e nonostante sia ripetutamente impiegato *off-label*¹⁹.

Nelle infezioni da STEC, l'uso di antibiotici che inducono lisi batterica può precipitare lo sviluppo della SEU (25: 98%)

Storicamente, l'uso di antibiotici nei pazienti con infezione da STEC è controindicato poiché causa l'induzione dei batteriofagi che veicolano i geni codificanti le Stx e la trascrizione degli stessi, mentre la conseguente lisi batterica determina una liberazione istantanea delle Stx accumulate nel batterio, con un aumento del rischio di conversione in SEU^{20,21}. Nonostante questa posizione generale, in Giappone i pazienti con infezione da STEC vengono estensivamente trattati con fosfomicina sin dall'epidemia che nel 1996 ha coinvolto 12.680 soggetti²². I colleghi nipponici rivendicano buoni risultati attraverso questa gestione clinica^{23,24}.

17. La precoce somministrazione di antibiotici, che non inducono lisi della parete batterica, potrebbe ridurre il rischio di conversione in SEU delle infezioni da STEC (23; 86%)

La letteratura più recente mette in luce come il rischio di evoluzione di un'infezione da STEC in SEU con trattamenti antibiotici valga per alcuni agenti battericidi (chinolonici, beta-lattamici e sulfamidici^{25,26}) che incrementano la produzione e liberazione di Stx. L'azitromicina, antibiotico batte-

riostatico che non induce lisi della parete batterica, ha invece mostrato la capacità di ridurre la produzione di Stx in vitro²⁷⁻²⁹. Inoltre, in un modello animale, l'azitromicina ha rivelato un effetto protettivo nei confronti delle complicanze neurologiche e gastrointestinali dovute all'infezione da STEC³⁰. Vi sono poi alcune esperienze promettenti di utilizzo dell'azitromicina in pazienti con documentata infezione da STEC³¹⁻³³. Tra queste è presente una recente analisi retrospettiva pubblicata a opera del Centro SEU di Milano nella quale, su 54 pazienti trattati con questo batteriostatico (10 mg/kg/die, dose massima 500 mg per un massimo di 5 giorni), solo 1 caso ha sviluppato la SEU a fronte di un numero atteso di 8 (1,9% vs 15%)³⁴. Sono in corso studi più solidi per confermare la sicurezza e l'efficacia di questo nuovo approccio all'infezione da STEC. Attualmente l'uso dell'azitromicina nell'infezione da STEC rimane trattamento off-label e applicabile a discrezione del clinico avendo però seguito la relativa procedura che prevede, tra l'altro, il consenso del paziente o dei genitori dopo una corretta loro informazione.

18. Raramente, l'infezione da STEC può essere fattore scatenante la SEU atipica da disregolazione del complemento rendendo difficile la diagnosi differenziale tra SEU tipica e atipica (18; 96%).

Circa il 6-8% della popolazione sana presenta varianti genetiche a carico dei geni regolatori del complemento (CFH, CFI, CFB, CD46 e C3) potenzialmente disregolanti la sua funzione. La slatentizzazione di questa condizione genetica avviene tipicamente in corso di eventi acuti o malattie croniche (infezioni, vaccinazioni, parto, interventi chirurgici, traumi, malattie autoimmuni, tumori). La manifestazione clinica di queste disregolazioni del complemento è la SEU atipica. Questo comporta che anche il 6-8% dei soggetti che contraggono l'infezione da STEC possano avere una disregolazione del complemento su base genetica e quindi sviluppare una SEU atipica. Tale situazione clinica rende molto difficile la

diagnosi differenziale per la coesistenza dei segni di una SEU in associazione all'infezione da STEC che porterebbe alla ovvia diagnosi di SEU da STEC (tipica) quando invece è o può essere atipica. La mancata diagnosi differenziale tra SEU tipica e atipica, in questo contesto, espone il paziente a una terapia non adeguata. Infatti la SEU, quando atipica da disregolazione del complemento, beneficerebbe di terapia specifica con inibitore del C5.

Elementi utili per la diagnosi differenziale e per il sospetto di SEU atipica nonostante l'infezione da STEC sono: la persistenza di C3 inferiore ai limiti minimi quand'anche la fase acuta della presunta SEU tipica sia passata, un'ipertensione severa in fase iniziale, l'assenza di segni di remissione della MAT a distanza di una settimana dall'esordio e la mancata ripresa funzionale renale.

Ringraziamenti

Si ringraziano i seguenti professionisti per l'importante contributo fornito alla stesura del presente documento o all'acquisizione delle informazioni in esso contenute: Fiorella Acquotta, Paolo Adamoli, Nicola Altamura, Angela Amoroso, Stefano Andreoni, Massimo Andreotti, Maddalena Antolini, Milana Arghittu, Francesca Atzeri, Carlo Baldioli, Barbara Balduzzi, Irene Benini, Simone Benvenuto, Francesco Beretta, Cristina Bertulli, Valeria Besutti, Lorenzo Biscardi, Annalisa Bonazza, Cristina Bonetti, Annalisa Bosco, Grazia Bossi, Marta Brambilla, Maria Francesca Brambillasca, Valentina Burzio, Anna Elisabetta Bussolini, Elena Cama, Patrizia Carlucci, Maria Carrabba, Maria Luisa Casciana, Daniela Casnaghi, Eleonora Castellone, Valeria Castorani, Marco Cazzaniga, Claudio Cavalli, Lisa Lucia Chenal, Rosaria Celano, Rossella Ceruti, Marta Cerutti, Giulia Cesano, Giulia Chiopris, Anna Cogliardi, Giacomo Colella, Lucia Collini, Rosaria Colombo, Dario Consonni, Crescenzo Coppola, Angela Corna, Annalisa Corti, Giorgia Daffunchio, Simona De Franco, Elena Lucia De Rose, Laura Dell'Era, Giulia Dilio, Clelia Di Mari, Sandra Esposito, Diana Fanti, Alessandra Ferrari, Ilaria Frugnoli, Maria Forestieri, Gloria Fumagalli, Maria Rita Gallina, Miriam Chiara Gatto, Claudio Giacomazzi, Stefano Grossi, Silvia Grosso, Chiara Gualeni, Matteo Guarnaroli, Elisa La Barba, Ana Maria La Pusata, Sara La Rosa, Annalisa Lastrico, Alberto Lepre, Francesca Lizzoli, Rosa Maria Maccarone, Anna Madera, Laura Martelli, Elena Mazzali, Elisabetta Mazzola, Marcella Mercuri, Elisa Milanesi, Chiara Minini, Paola Mirri, Sonia Monticone, Alice Monzani, Vincenza Morinello, Arianna Moroni, Maria Carmela Musolino, Maria Amata Negri, Stefano Nespoli, Bianca Osnaghi, Elisabetta Pagani, Franca Pagani, Cristina Partenope, Palmiro Pedroni, Giovanni Raimondo Pieri, Maria Antonietta Piscopo, Stefano Poli, Ilaria Possenti, Giulia Ramponi, Agrippino Reciputo, Ria Thomas, Barbara Roman, Barbara Ronchi, Chiara Rosazza, Daniele Rossetti, Elena Rossi, Claudia Ruggieri, Maria Lorena Ruzza, Fi-

GRUPPO DI LAVORO

Gianluigi Ardissino, Centro per la Cura e lo Studio della Sindrome Emolitica Uremica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano per la sorveglianza DEA Lombardia Piemonte Orientale Valle d'Aosta - ItalKid-HUS Network Rino Agostiniani, SC Pediatria e Neonatologia, ASL3 di Pistoia per la Società Italiana di Pediatria (SIP,

Simone Vasilij Benatti, Clinica di Malattie Infettive, Asst Santi Paolo e Carlo, Milano Silvia Bonardi*, Dipartimento di Scienze Medico Veterinarie, Università di Parma Milena Brasca*, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche di Milano

Maurizio Brigotti, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Patologia Generale, Università di Bologna

Annapaola Callegaro*, SC Microbiologia e Virologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano

Francesca Centrone, UOC Igiene, AOUC Policlinico di Bari per la Sorveglianza Gastroenteriti Emorragiche - Puglia

Maria Chironna, Dipartimento Interdisciplinare di Medicina (DIM) - Università di Bari per la Sorveglianza Gastroenteriti Emorragiche - Puglia

Pierangelo Clerici* per l'Associazione Microbiologi Clinici Italiani (AMCLI) Laura Daprai*, SC Microbiologia e Virologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano

Giulia Debertolis, Ospedale Centrale di Bolzano, Azienda Sanitaria dell'Alto Adige Lucia Decastelli*, SC Sicurezza e Qualità degli Alimenti, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino

Lidio Decembrino, SC di Pediatria e Neonatologia. Dipartimento della Salute della Donna e Materno Infantile, Ospedale Civile di Vigevano per la Società Italiana Medicina Emergenza Urgenza Pediatrica (SIMEUP)

Luca De Nicola, Nefrologia, Università Vanvitelli di Napoli, per la Società Italiana di Nefrologia (SIN)

Giuseppe Di Mouro, Pediatra di famiglia di Caserta per la Società Italiana di Pediatria Preventiva e Sociale (SIPPS)

Federica Folli*, Ospèdale Centrale di Bolzano, Azienda Sanitaria dell'Alto Adige, Bolzano Liliana Gabrielli*, UOC Microbiologia, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna per l'Associazione Microbiologi Clinici Italiani (AMCLI)

Alessandra Gazzola*, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sede di Lodi

Edoardo La Porta, IRCCS Istituto Giannina Gaslini, Genova per la Sorveglianza Gastroenteriti Emorragiche - Liguria

Marina Nadia Losio*, SC Controllo Alimenti, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, sede di Brescia

Andrea Lo Vecchio, Università Federico II di Napoli per la Società Italiana di Infettivologia Pediatrica (SITIP)

Mario Luini*, Istituto di Biologia e Biotecnologia Agraria, CNR di Lodi Chiara Francesca Magistrali*, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sede di Lodi

Maria Cristina Mancuso, Centro per la Cura e lo Studio della Sindrome Emolitica Uremica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano

Carmelita Marcantoni, UOSD di Nefrologia e Dialisi, AOU Policlinico, "G.Rodolico-San

Marco", Catania per la Società Italiana di Nefrologia (SIN) Stefano Morabito*, Laboratorio Nazionale di Riferimento Escherichia coli, Istituto Superiore di Sanità, Roma

Giangiacomo Nicolini, UOC di Pediatria dell'Ospedale di Conegliano per la Società Italiana di Infettivologia Pediatrica (SITIP)

Lorenzo Norsa, Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università di Milano per la Società Italiana di Gastroenterologia, Epatologia e Nutrizione Pediatrica Andrea Pasini, Unità di Nefrologia e Dialisi Pediatrica, IRCCS Azienda Ospedaliero-Universitaria, Bologna per la Sorveglianza Gastroenteriti Emorragiche - Emilia-Romagna Claudia Picozzi*, Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università di Milano

Nicola Principi, Professore Emerito di Pediatria, Università di Milano per la Società Italiana di Pediatria Preventiva e Sociale

Claudio Romano, UO di Gastroenterologia Pediatrica e Fibrosi Cistica, Università di Messina per la Società Italiana di Gastroenterologia, Epatologia e Nutrizione Pediatrica Maria Lorena Ruzza, SC di Pediatria, ASST Santi Paolo e Carlo, Presidio San Carlo, Milano per la Società Italiana di Pediatria (SIP)

Stefania Zampogna, SOC Pediatria, Dipartimento Materno Infantile, Crotone per la Società Italiana Medicina Emergenza Urgenza Pediatrica (SIMEUP)

^{*}Il contributo è limitato alla parte I

lippo Salvini, Letizia Sardella, Martina Scali, Chiara Sciuto, Alessandra Scolari, Micaela Silvestri, Daniela Simoncini, Giulia Smylie, Rosa Maria Taibi, Giacomo Tamburini, Francesca Tel, Sara Testa, Valentina Todescato, Elena Tommaso-ni, Paola Tommasi, Marilena Tumminelli, Gaia Vanzù, Antonio Vergori, Federica Vianello, Chiara Vismara, Chiara Zambetti.

Si ringraziano anche le Associazioni che operano nel settore della SEU per la costante attività a favore dei pazienti che include anche il loro supporto a questa iniziativa: "Progetto Alice ETS. Associazione per la lotta alla SEU", "Michela L'Angelo Farfalla", "Il Trenino di Elia".

Indirizzo per corrispondenza:

Gianluigi Ardissino ardissino@centroseu.org

Bibliografia

1. Guarino A, Ashkenazi S, Gendrel D, Lo Vecchio A, Shamir R, Szajewska H; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition; European Society for Pediatric Infectious Diseases. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases Evidence-based guidelines for the management of acute gastroenteritis in children in Europe: update 2014. J Pediatr Gastroenterol Nutr 2014;59(1):132-52. doi: 10.1097/MPG.000000000000375.

2. Ardissino G, Vignati C, Masia C, et al.; ItalKid-HUS Network. Bloody Diarrhea and Shiga Toxin-Producing Escherichia coli Hemolytic Uremic Syndrome in Children: Data from the ItalKid-HUS Network. J Pediatr 2021; 237:34-40.e1. doi: 10.1016/j.jpeds.2021.06.048. 3. Terajima J, Izumiya H, Hara-Kudo Y, Ohnishi M. Shiga Toxin (Verotoxin)-producing *Escherichia coli* and Foodborne Disease: A

Review. Food Saf (Tokyo) 2017;5(2):35-53. doi: 10.14252/foodsafetyfscj.2016029.

4. Ardissino G, Possenti I, Vignati C, et al. Is Shigatoxin 1 protective for the development of Shigatoxin 2 related home by the revenue of Shigatoxin 2 related home by the related home by the revenue of Shigatoxin 2 related home by the related of Shigatoxin 2-related hemolytic uremic syndrome in children? Data from the ItalKid-HUS Network. Pediatr Nephrol 2020;35(10): 1997-2001. doi: 10.1007/s00467-020-04697-y. 5. Ardissino G, Salardi S, Colombo E, et al. Epidemiology of haemolytic uremic syndrome in children. Data from the North Italian HUS network. Eur J Pediatr 2016;175(4):465-73. doi: 10.1007/s00431-015-2642-1.

6. Istituto Superiore di Sanità. Dati del Registro Italiano (www.epicentro.iss.it/).

7. Zoufaly A, Cramer JP, Vettorazzi E, et al. Risk factors for development of hemolytic uremic syndrome in a cohort of adult patients with STEC 0104:H4 infection. PLoS One 2013;8(3):e59209. doi: 10.1371/journal.

8. Ko H, Maymani H, Rojas-Hernandez C. Hemolytic uremic syndrome associated with Escherichia coli O157:H7 infection in older adults: a case report and review of the literature. J Med Case Rep 2016;10:175. doi: 10.1186/s13256-016-0970-z.

9. Luini MV, Colombo R, Dodaro A, et al. Family Clusters of Shiga Toxin-producing Escherichia coli Infection: An Overlooked Source of Transmission. Data From the ItalKid-Hus Network. Pediatr Infect Dis J 2021;40(1):1-5.

doi: 10.1097/INF.0000000000002877. 10. Snedeker KG, Shaw DJ, Locking ME, Prescott RJ. Primary and secondary cases in Escherichia coli O157 outbreaks: a statistical analysis. BMC Infect Dis 2009;9:144. doi:

10.1186/1471-2334-9-144.
11. Ria T, Mancuso MC, Daprai L, et al.; ItalKid-HUS Network. Vacation in Egypt associated with Shiga toxin-producing Escherichia coli infection in children and adolescents, northern Italy, 2023. Euro Surveill 2024;29(30):2400056. doi: 10.2807/1560-7917.ES.2024.29.30.2400056.

12. Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020;12(2):67. doi: 10.3390/toxins12020067.

Capone V, Mancuso MC, Tamburini G, Montini G, Ardissino G. Hemoglobinuria for the early identification of STEC-HUS in high-Network. Eur J Pediatr 2021;180(9):2791-5. doi: 10.1007/s00431-021-04016-z. 14. Grisaru S, Xie J, Samuel S, et al.; Alberta Provincial Pediatric Enteric Infection Team.

Associations Between Hydration Status, Intravenous Fluid Administration, and Outcomes of Patients Infected With Shiga Toxin-Producing Escherichia coli: A Systematic Review and Meta-analysis. JAMA Pediatr 2017;171(1):68-76. doi: 10.1001/jamapedia-

15. Giordano P, Netti GS, Santangelo L, et al. A pediatric neurologic assessment score may drive the eculizumab-based treatment of Escherichia coli-related hemolytic uremic escherichia con-related hemory de dreinic syndrome with neurological involvement. Pe-diatr Nephrol 2019;34(3):517-27. doi: 10.1007/s00467-018-4112-2. 16. Ardissino G, Tel F, Testa S, et al.; ItalKid-HUS Network. A simple prognostic index for

Shigatoxin-related hemolytic uremic syndrome at onset: data from the ItalKid-HUS network. Eur J Pediatr 2018;177(11):1667-74. doi: 10.1007/s00431-018-3198-7.

17. Ardissino G, Tel F, Possenti I, et al. Early Volume Expansion and Outcomes of Hemolytic Uremic Syndrome. Pediatrics 2016;137(1). doi: 10.1542/peds.2015-2153.

18. Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022;15(1):10. doi: 10.3390/toxins15010010. 19. Garnier A, Brochard K, Kwon T, et al. Efficacy and Safety of Eculizumab in Pediatric

Patients Affected by Shiga Toxin-Related Hemolytic and Uremic Syndrome: A Randomized, Placebo-Controlled Trial. J Am Soc Nephrol 2023;34(9):1561-73. doi: 10.1681/ ASN.00000000000000182.

20. Freedman SB, Xie J, Neufeld MS, et al.; Alberta Provincial Pediatric Enteric Infection Team (APPETITE). Shiga Toxin-Producing Escherichia coli Infection, Antibiotics, and Risk of Developing Hemolytic Uremic Syndrome: A Meta-analysis. Clin Infect Dis 2016;62(10):1251-8. doi: 10.1093/cid/ciw099. 21. Tarr PI, Freedman SB. Why antibiotics should not be used to treat Shiga toxin-producing *Escherichia coli* infections. Curr Opin Gastroenterol 2022;38(1):30-8. doi: 10.1097/ MOG.00000000000000798.

22. Fukushima H, Hashizume T, Morita Y, et al. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohe-

morrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr Int 1999;41(2):213-7. doi: 10.1046/j.1442-200x.1999.4121041.x. 23. Myojin S, Pak K, Sako M, et al. Interven-

tions for Shiga toxin-producing Escherichia coli gastroenteritis and risk of hemolytic uremic syndrome: A population-based matched case control study. PLoS One 2022;17(2): e0263349. doi: 10.1371/journal.pone.0263349. 24. Tajiri H, Nishi J, Ushijima K, et al. A role for for for my in treatment in children for present in children for pr for fosfomycin treatment in children for prevention of haemolytic-uraemic syndrome accompanying Shiga toxin-producing *Escherichia coli* infection. Int J Antimicrob Agents 2015;46(5):586-9. doi: 10.1016/j.ijantimicag.2015.08.006.

25. Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by shiga toxin-producing *Escherichia coli*: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 2000;6(5):458-65. doi: 10.3201/ eid0605.000503.

26. Bielaszewska M, Idelevich EA, Zhang W, et al. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. Antimicrob Agents Chemother 2012;56(6):3277-

82. doi: 10.1128/AAC.06315-11. 27. Ohara T, Kojio S, Taneike I, et al. Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrob Agents Chemother 2002;46(11):3478-83. doi: 10.1128/ AAC.46.11.3478-3483.2002.

28. Berger M, Aijaz I, Berger P, Dobrindt U, Koudelka G. Transcriptional and Translational Military Control of the Control of nal Inhibitors Block SOS Response and Shiga Toxin Expression in Enterohemorrhagic Escherichia coli. Sci Rep 2019;9(1):18777. doi: 10.1038/s41598-019-55332-2

29. Ramstad SN, Taxt AM, Naseer U, Wasteson Y, Bjørnholt JV, Brandal LT. Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing *Escherichia coli*. Microb Pathog 2021;152:104636. doi: 10.1016/j.micpath.2020.104636.

30. Zhang Q, Donohue-Rolfe A, Krautz-Peterson G, Sevo M, Parry N, Abeijon C, Tzipori S. Gnotobiotic piglet infection model for evaluating the safe use of antibiotics against Escherichia coli O157:H7 infection. J Infect Dis 2009;199(4):486-93. doi: 10.1086/596509. 31. Agger M, Scheutz F, Villumsen S, Mølder

bak K, Petersen AM. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEČ) infection: a systematic review and a proposal. J Antimicrob Chemother 2015;70(9):2440-6. doi: 10.1093/jac/dkv162. 32. Sayk F, Husballe M. Rupp J, Nitschke M. Do asymptomatic STEC-longterm carriers need to be isolated or decolonized? New evidence from a community case study and concepts in favor of an individualized strategy. Front Public Health 2024;12: 1364664. doi: 10.3389/fpubh.2024.1364664. 33. Nitschke M, Sayk F, Härtel C, et al. Association between azithromycin therapy and duration of bacterial shedding among patients with Shiga toxin-producing enteroaggregative *Escherichia coli* O104:H4. JAMA 2012;307(10):1046-52. doi: 10.1001/jama.2012.264.

34. ArdissinoG, Dato L, MancusoMC, et al. Azithromycin for the Prevention of Hemolytic Uremic Syndrome in Shiga Toxin-Positive Diarrhea: A Proof of Concept. Journal of the American Society of Nephrology 2024; 35 (10S). doi: 10.1681/ASN.2024fmfgwrv7.